Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanotheranostics ; 8(3): 330-343, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577323

RESUMO

Atomic Force Microscopy (AFM) is a very flexible method that can create topographical images from a range of materials and image surfaces. Significantly, AFM has emerged as an invaluable tool for dissecting the morphology and biochemical aspects of body cells and tissues. The high-resolution imaging capabilities of AFM enable researchers to discern alterations in cell morphology and understand the underlying mechanisms of diseases. It contributes to understanding disease etiology and progression. In the context of this review, our focus will be directed towards elucidating the pivotal role of AFM in analysis of blood related disorders. Through detailed comparisons with normal cells, we delve into the alterations in size, shape, and surface characteristics induced by conditions such as cancer, diabetes, anaemia, and infections caused by pathogens. In essence, various work described in this article highlights to bridge the gap between traditional microscopy and in-depth analysis of blood-related pathologies, which in turn offers valuable perspectives for both research and clinical applications in the field.


Assuntos
Doenças Hematológicas , Microscopia de Força Atômica , Microscopia de Força Atômica/métodos , Doenças Hematológicas/diagnóstico por imagem , Humanos
2.
Nanomedicine (Lond) ; 8(11): 1777-95, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23384697

RESUMO

AIM: An injectable, photocrosslinkable nanocomposite was prepared using a fumarate derivative of poly(glycerol sebacate) and nanohydroxyapatite. MATERIALS & METHODS: Polymers with varying physical and mechanical properties were synthesized. Furthermore, nanocomposites were developed using a homogenization process by combining nanohydroxyapatite within poly(glycerol sebacate) matrix via photocrosslinking and evaluated both in vitro and in vivo. RESULTS & DISCUSSION: The nanocomposites were injectable, highly bioactive and biocompatible. Addition of nanohydroxyapatite led to enhanced mechanical properties with an ultimate strength of 8 MPa. The optimized nanocomposite showed good in vitro cell attachment, proliferation and differentiation of rat bone marrow-derived mesenchymal stem cells. The in vivo evaluation in a rat calvarial bone defect model showed significantly high alkaline phosphatase activity and bone regeneration. CONCLUSION: This injectable, biocompatible and bioactive in situ hardening composite graft was found to be suitable for load-bearing bone regeneration applications using minimally invasive surgery.


Assuntos
Materiais Biocompatíveis/farmacologia , Decanoatos/química , Glicerol/análogos & derivados , Nanocompostos/química , Polímeros/química , Animais , Materiais Biocompatíveis/administração & dosagem , Materiais Biocompatíveis/química , Regeneração Óssea/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Glicerol/química , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Nanocompostos/administração & dosagem , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA